Human Analysts Guarantee Bias

During an interview between Shane Parrish and Daniel Kahneman, one of the many interesting comments made was around how to make better decisions. Kahneman said that despite studying decision-making for many years, he was still prone to his own biases. Knowing about your biases doesn't make them any easier to overcome.

His recommendation to avoid bias in your decision making is to devolve as many decisions as you can to an algorithm. Translating what he is saying to analytical and statistical jobs suggests that no matter how hard we try, we always approach analysis with biases that are hard to overcome. Sometimes our own personal biases are exaggerated by external incentive models. Whether you are evaluating your bosses latest pet idea, or writing a research report for a paying client, delivering the wrong message can be costly, even if it is the right thing to do.

Knowledge Leaps has an answer. We have built two useful tools to overcome human bias in analysis. The first is a narrative builder that can be applied to any dataset to identify the objective narrative captured in the data. Our toolkit can surface a narrative without introducing human biases.

The second tool we built removes bias by using many pairs of eyes to analyze data and average out any potential analytical bias. Instead of a single human (i.e. bias prone analyst) looking at a data set our tool lets lots of people look at it simultaneously and share their individual interpretation of the data. Across many analysts, this tool will remove bias through collaboration and transparency.

Get in touch to learn more. doug@knowledgeleaps.com.

Awareness Doesn’t Diminish Bias Effect

In an interview with Shane Parrish the co-creator of Behavioral Economics, Daniel Kahneman, was asked if he was better at making decisions after studying decision-making for the past 40 years. His answer was a flat no. He then elaborated, saying that biases are hard for an individual to overcome. This dynamic is most evident in the investment community, especially start-up investors. WeWork is a good case study in people ignoring their biases. An article in yesterday's Wall Street Journal (Paywall) describes WeWork's external board and investors looking on as the firm missed projections year-after-year. On the run up to the IPO, people were swayed by their biases and despite data to the contrary more gasoline was poured on the fire. It took public scrutiny for the real narrative to come out and for people to see their own biases at play. To be fair to those involved, the IPO process was used to deliver some unvarnished truths to WeWork's C-suite. As Kahneman said, even professional analysts of decision-making get it wrong from time to time. 

What hope do the rest of us have? With the right data it is easier to at least be reminded of your biases, even if you choose to accept them. With our data and analytics platform we have built two core components that give you and your team a greater opportunity of not falling into a bias trap.

Narrative Builder

This component uses an algorithm that outputs human-readable insight into the relationships in your data. Using correction techniques and cross-validation to avoid computational-bias you can identify the cold-facts when it comes to the relationships (the building blocks of the narrative) in your data. 

Collaborative Insight Generation

The second component we have built to help diminish bias is a collaboration feature. As you analyze data and produce charts other members of your team and provide input and hypotheses for each chart. Allowing a second, third or even fourth pair of eyes to interpret data helps build a resilient narrative.

Surfacing a bias-free narrative is only part of the journey, we still need to convince other humans, with their own biases, of the story discovered in the data. As we have learnt in recent years, straight facts aren't sufficient conditions of belief. At least with a collaborative approach we can help overcome bias traps.

Surfacing a bias-free narrative is only part of the journey, we still need to convince other humans, with their own biases, of the story discovered in the data. As we have learnt in recent years, straight facts aren't sufficient conditions of belief. At least with a collaborative approach we can help overcome bias traps.